David Young
  • Home
  • About
  • Contact
  • Personal Projects
    • Computer Science >
      • Computer Vision >
        • 2016 - Homography w/ RANSAC
        • 2016 - Fundamental Matrix & Triangulation
        • 2016 - Laplacian Blob Detector
        • 2016 - Photometric Stereo: Shape From Shading
        • 2015 - Optical Character Recognition w/ OpenCV and Deep Learning
        • 2015 - Feature Detection
        • 2015 - Feature Description
        • 2015 - Feature Matching
        • 2015 - Panoramas (Alignment, Stitching, Blending)
        • 2015 - Facial Detection & Recognition
        • 2015 - Single View Modeling
      • Artificial Intelligence >
        • 2019 - Talk: How Neural Networks See the World
        • 2018 - Generating Text and Poetry
        • 2015 - Optical Character Recognition w/ OpenCV and Deep Learning
        • 2015 - Constraint Satisfaction Problems
        • 2015 - Adversarial Search
        • 2015 - Path Planning (Mazes + Pacman)
        • 2015 - Digit Classification (Bayes)
        • 2015 - Text Document Classification (Bayes)
        • 2015 - Multi-Class Perceptrons
        • 2015 - Markov Decision Processes & Reinforcement Q-Learning
        • 2015 - Simulating Neuronal Learning during Brain-Machine Interface
      • Machine Learning >
        • 2016 - Naive Bayes Classifiers in R
        • 2016 - Stochastic Gradient Descent (SVM in R)
        • 2016 - Comparing Classifiers in R
        • 2016 - Visualize High Dim Data: Blob Analysis + PCA
        • 2016 - Image Segmentation w/ EM
        • 2016 - Regression Kernel Smoothing
        • 2016 - Multinomial Regression on Wide Datasets
      • Robotics >
        • 2017 - 3dof Parallel Motion Simulator
        • 2015 - Designing a Hybrid Controller
        • 2015 - Controlling Pendubot with a Kinect
      • Computer Architecture >
        • 2016 - Architecture Support for Accelerator Rich CMPs
        • 2014 - Weighted Vector Addition with Cuda Framework
        • 2014 - Parallel Reduction with Cuda Framework
        • 2014 - Designing a Pipelined CPU
        • 2014 - Intel SSE Intrinsics Applications in Rudimetary Matrix Algorithms
        • 2014 - LIFC to MIPS Compiler and Assembler
      • Web Development >
        • 2014 - Javascript Calendar
        • 2014 - Multi-Room Chat Server
      • Graphics >
        • 2015 - Basic Animation w/ WebGL
        • 2015 - Diamond Square Terrain Generator
        • 2015 - Flight Simulator w/ WebGL
        • 2015 - Multi-Program Texture Mapping WebGL
      • Software >
        • 2015 - Consumer Grade Gaze Pattern Recognition Software
        • 2015 -Test History Jenkins Plugin
      • Other >
        • 2014 - Hashtable for Genomic DNA Sequences
        • 2014 - Closest Pair of Points
    • Virtual Reality, Game Design, & Animation >
      • 2019 - Interactive Music Visualization
      • 2016 - Visualizing Runtime Flowpath in VR
      • 2016 - Fiducial Marker Tracking for Augmented Reality
      • 2015 - Experimenting with PhysX & APEX Destruction
      • 2015 - Rigging Tank Treads using MEL in Maya
      • 2015 - Automated Simulation Teddy Bear Bin
      • 2014 - Networked Multiplayer Game of Set
      • 2014 - Asymmetrical Multiplayer Destruction
      • 2016 - Tracking & Depth Perception
      • 2014 - 8 Week Game Design (Cave Survival)
      • 2015 - Experimenting with Nvidia FLEX
    • Computers >
      • Custom and Watercooled PCs
      • Component Reviews
      • Installation Guides
    • Quantitative Physiology >
      • Computational >
        • 2015 - Modelling Neurons & Action Potentials
        • 2015 - Simulating Neuronal Learning during Brain-Machine Interface
        • 2014 - Imaging: Rabbit Optical Mapping
        • 2014 - Simulating Electrical Stimulation w/ Comsol
        • 2014 - Ion Channels
        • 2013 - Designing Filters to Simulate Olfactory Sensation
        • 2014 - CardioVascular Mechanics
        • 2014 - Renal
        • 2013 - Principal Component Analysis & Singlar Value Decomposition
        • 2013 - 3D Printed Frog Muscle Holder
      • Physical >
        • 2013 - Biomedical Signal Acquisition
        • 2013 - Electrooculogram
        • 2013 - Compound Action Potential in Frog Sciatic Nerve
        • 2013 - Contractile Properties of Frog Skeletal Muscle
        • 2013 - Locust Olfaction
        • 2014 - Voltage Clamp
        • 2013 - Dive Response
        • 2014 - Frog Heart Muscle
        • 2013 - Ultrasound
        • 2014 - Biological Signal Conditioning
        • 2014 - EKG, Vector Cardiograms & Pulse Wave Velocity
    • Electrical Projects >
      • Self Balancing Robot Pendulum
      • Custom Beer Pong Tables
      • 4-axis Robotic Arm
      • Modified Electric MiniBike
      • Secret Knock Detecting Automatic Door Opener
      • Car Audio
      • Tree-House Wiring
      • Laser Harp
    • Auto & Mechanical Projects >
      • Single Turbo Lexus SC300
      • Track Day Mx-5
      • Karting
      • Racing Simulator Rig
      • 50cc Barbie Jeep
    • Random Other Projects >
      • Talk: Embodied Cognition
      • Bathymetry Coffee Table
      • Not your average Tree House
      • Pneumatic Tennis Ball Cannon
  • Experience
    • Resume
    • Work Experience
    • Programming Experience
    • Research Experience
    • Service Work
  • Education
  • Hobbies
    • Motorsports
    • Art
    • Music
    • Gaming
    • Dancing

2-Stroke Power Barbie Jeep
(2010)


When I was little I wanted a power-wheels electric jeep more than anything in the world.  I never got one.  But later I decided to make my childhood dream a reality.  If an adult riding a power-wheels wasn't ridiculous enough already, I chose a pink barbie jeep to sweeten the deal.

Acquiring the Chassis

Craiglist is always coming through for me.  This time it was an electrically dead pink jeep chassis for free.
Picture
Picture

Steel Frame

There was no way the plastic would hold up an adult's weight for very long and more importantly, I needed something to mount axle bracketry to. I decided to make a simple frame out of small square steel tubing.

Combustion Power

Picture
Although a small 4-stroke engine would have been ideal for this application with low torque, my budget didn't have much room. Luck had it that I had a spare 49cc pocketbike motor laying around... similar to the one shown.  The really tricky part was finding an exhaust that would work with the engine exhaust port and that would somehow fit under the jeep.  The effect and placement of the expansion chamber on a two stroke exhaust is imperative to power output. The resonance of the exhaust gas off the chamber wall acts as a form of acoustic supercharging by reverberating backwards and compressing intake air that was drawn all the way through the chamber into the exhaust pipe back into the chamber. This compresses more air into the chamber and leads to a more powerful explosion. The shape and placement of the chamber for optimal power requires extensive tuning and with small engines like this one, it can really hurt power output to mess with that tuning. Unfortunately sometimes you've got to take a hit somewhere and so I chose the least destructive method I could come up with. I picked an exhaust with a long run to the expansion chamber so that i could bend the constant radius pipe to fit under the jeep and leave the chamber sticking out the back.  

Picture

Axle, Sprocket and Chain

Picture

Rigging Up Throttle Cable Bracketry


Tires, Traction and Living without Brakes


Proudly powered by Weebly