David Young
  • Home
  • About
  • Contact
  • Personal Projects
    • Computer Science >
      • Computer Vision >
        • 2016 - Homography w/ RANSAC
        • 2016 - Fundamental Matrix & Triangulation
        • 2016 - Laplacian Blob Detector
        • 2016 - Photometric Stereo: Shape From Shading
        • 2015 - Optical Character Recognition w/ OpenCV and Deep Learning
        • 2015 - Feature Detection
        • 2015 - Feature Description
        • 2015 - Feature Matching
        • 2015 - Panoramas (Alignment, Stitching, Blending)
        • 2015 - Facial Detection & Recognition
        • 2015 - Single View Modeling
      • Artificial Intelligence >
        • 2019 - Talk: How Neural Networks See the World
        • 2018 - Generating Text and Poetry
        • 2015 - Optical Character Recognition w/ OpenCV and Deep Learning
        • 2015 - Constraint Satisfaction Problems
        • 2015 - Adversarial Search
        • 2015 - Path Planning (Mazes + Pacman)
        • 2015 - Digit Classification (Bayes)
        • 2015 - Text Document Classification (Bayes)
        • 2015 - Multi-Class Perceptrons
        • 2015 - Markov Decision Processes & Reinforcement Q-Learning
        • 2015 - Simulating Neuronal Learning during Brain-Machine Interface
      • Machine Learning >
        • 2016 - Naive Bayes Classifiers in R
        • 2016 - Stochastic Gradient Descent (SVM in R)
        • 2016 - Comparing Classifiers in R
        • 2016 - Visualize High Dim Data: Blob Analysis + PCA
        • 2016 - Image Segmentation w/ EM
        • 2016 - Regression Kernel Smoothing
        • 2016 - Multinomial Regression on Wide Datasets
      • Robotics >
        • 2017 - 3dof Parallel Motion Simulator
        • 2015 - Designing a Hybrid Controller
        • 2015 - Controlling Pendubot with a Kinect
      • Computer Architecture >
        • 2016 - Architecture Support for Accelerator Rich CMPs
        • 2014 - Weighted Vector Addition with Cuda Framework
        • 2014 - Parallel Reduction with Cuda Framework
        • 2014 - Designing a Pipelined CPU
        • 2014 - Intel SSE Intrinsics Applications in Rudimetary Matrix Algorithms
        • 2014 - LIFC to MIPS Compiler and Assembler
      • Web Development >
        • 2014 - Javascript Calendar
        • 2014 - Multi-Room Chat Server
      • Graphics >
        • 2015 - Basic Animation w/ WebGL
        • 2015 - Diamond Square Terrain Generator
        • 2015 - Flight Simulator w/ WebGL
        • 2015 - Multi-Program Texture Mapping WebGL
      • Software >
        • 2015 - Consumer Grade Gaze Pattern Recognition Software
        • 2015 -Test History Jenkins Plugin
      • Other >
        • 2014 - Hashtable for Genomic DNA Sequences
        • 2014 - Closest Pair of Points
    • Virtual Reality, Game Design, & Animation >
      • 2019 - Interactive Music Visualization
      • 2016 - Visualizing Runtime Flowpath in VR
      • 2016 - Fiducial Marker Tracking for Augmented Reality
      • 2015 - Experimenting with PhysX & APEX Destruction
      • 2015 - Rigging Tank Treads using MEL in Maya
      • 2015 - Automated Simulation Teddy Bear Bin
      • 2014 - Networked Multiplayer Game of Set
      • 2014 - Asymmetrical Multiplayer Destruction
      • 2016 - Tracking & Depth Perception
      • 2014 - 8 Week Game Design (Cave Survival)
      • 2015 - Experimenting with Nvidia FLEX
    • Computers >
      • Custom and Watercooled PCs
      • Component Reviews
      • Installation Guides
    • Quantitative Physiology >
      • Computational >
        • 2015 - Modelling Neurons & Action Potentials
        • 2015 - Simulating Neuronal Learning during Brain-Machine Interface
        • 2014 - Imaging: Rabbit Optical Mapping
        • 2014 - Simulating Electrical Stimulation w/ Comsol
        • 2014 - Ion Channels
        • 2013 - Designing Filters to Simulate Olfactory Sensation
        • 2014 - CardioVascular Mechanics
        • 2014 - Renal
        • 2013 - Principal Component Analysis & Singlar Value Decomposition
        • 2013 - 3D Printed Frog Muscle Holder
      • Physical >
        • 2013 - Biomedical Signal Acquisition
        • 2013 - Electrooculogram
        • 2013 - Compound Action Potential in Frog Sciatic Nerve
        • 2013 - Contractile Properties of Frog Skeletal Muscle
        • 2013 - Locust Olfaction
        • 2014 - Voltage Clamp
        • 2013 - Dive Response
        • 2014 - Frog Heart Muscle
        • 2013 - Ultrasound
        • 2014 - Biological Signal Conditioning
        • 2014 - EKG, Vector Cardiograms & Pulse Wave Velocity
    • Electrical Projects >
      • Self Balancing Robot Pendulum
      • Custom Beer Pong Tables
      • 4-axis Robotic Arm
      • Modified Electric MiniBike
      • Secret Knock Detecting Automatic Door Opener
      • Car Audio
      • Tree-House Wiring
      • Laser Harp
    • Auto & Mechanical Projects >
      • Single Turbo Lexus SC300
      • Track Day Mx-5
      • Karting
      • Racing Simulator Rig
      • 50cc Barbie Jeep
    • Random Other Projects >
      • Talk: Embodied Cognition
      • Bathymetry Coffee Table
      • Not your average Tree House
      • Pneumatic Tennis Ball Cannon
  • Experience
    • Resume
    • Work Experience
    • Programming Experience
    • Research Experience
    • Service Work
  • Education
  • Hobbies
    • Motorsports
    • Art
    • Music
    • Gaming
    • Dancing

Research Experience


Barbour Laboratory of Sensory Neuroscience and Neuroengineering

During undergrad, I worked as a research assistant in the Barbour Laboratory of Sensory Neuroscience and Neuroengineering. My work involved the design and development mobile applications to aid in Cognitive Neuro-therapeutics, specifically auditory training. 

A description directly from the website for the Laboratory of Sensory Neuroscience and Neuroengineering:
Our research group is fundamentally interested in how the brain encodes and processes information. The vertebrate nervous system routinely achieves feats of pattern recognition unparalleled by modern computers. The natural algorithms underlying this pattern recognition and the neuronal circuitry computing them both represent targets for research in my lab, predominantly by measuring single and bulk neuron activity in awake subjects. We are particularly interested in how complex sounds are encoded in the brain when interfering noise is present and how language is processed.

In related work, we also seek to be able to manipulate brain function for therapeutic purposes. Following brain injury such as a stroke, some function is lost and the brain network is disrupted. We apply principles of system theory and neuroplasticity toward developing brain-computer interfaces that can rewire brains and thus recover the lost function. We also explore how noninvasive technologies can be employed to induce therapeutic changes in the brain. One example of this is a series of smartphone-based video games we have designed to deliver listening training. These games are intended to optimize listening skills with a hearing-assist device, such as a cochlear implant or hearing aid.

Cognitive training software provides exercises whose completion strengthens certain cognitive processes. We seek to develop listening training software in the form of compelling video games playable on smartphones that naturally encourage individuals to complete their auditory training. The goal of this work is to optimize the function of hearing assist devices such as hearing aids and cochlear implants, as well as to enable individuals with a newly correct hearing deficit to learn to communicate effectively.
Proudly powered by Weebly