David Young
  • Home
  • About
  • Contact
  • Personal Projects
    • Computer Science >
      • Computer Vision >
        • 2016 - Homography w/ RANSAC
        • 2016 - Fundamental Matrix & Triangulation
        • 2016 - Laplacian Blob Detector
        • 2016 - Photometric Stereo: Shape From Shading
        • 2015 - Optical Character Recognition w/ OpenCV and Deep Learning
        • 2015 - Feature Detection
        • 2015 - Feature Description
        • 2015 - Feature Matching
        • 2015 - Panoramas (Alignment, Stitching, Blending)
        • 2015 - Facial Detection & Recognition
        • 2015 - Single View Modeling
      • Artificial Intelligence >
        • 2019 - Talk: How Neural Networks See the World
        • 2018 - Generating Text and Poetry
        • 2015 - Optical Character Recognition w/ OpenCV and Deep Learning
        • 2015 - Constraint Satisfaction Problems
        • 2015 - Adversarial Search
        • 2015 - Path Planning (Mazes + Pacman)
        • 2015 - Digit Classification (Bayes)
        • 2015 - Text Document Classification (Bayes)
        • 2015 - Multi-Class Perceptrons
        • 2015 - Markov Decision Processes & Reinforcement Q-Learning
        • 2015 - Simulating Neuronal Learning during Brain-Machine Interface
      • Machine Learning >
        • 2016 - Naive Bayes Classifiers in R
        • 2016 - Stochastic Gradient Descent (SVM in R)
        • 2016 - Comparing Classifiers in R
        • 2016 - Visualize High Dim Data: Blob Analysis + PCA
        • 2016 - Image Segmentation w/ EM
        • 2016 - Regression Kernel Smoothing
        • 2016 - Multinomial Regression on Wide Datasets
      • Robotics >
        • 2017 - 3dof Parallel Motion Simulator
        • 2015 - Designing a Hybrid Controller
        • 2015 - Controlling Pendubot with a Kinect
      • Computer Architecture >
        • 2016 - Architecture Support for Accelerator Rich CMPs
        • 2014 - Weighted Vector Addition with Cuda Framework
        • 2014 - Parallel Reduction with Cuda Framework
        • 2014 - Designing a Pipelined CPU
        • 2014 - Intel SSE Intrinsics Applications in Rudimetary Matrix Algorithms
        • 2014 - LIFC to MIPS Compiler and Assembler
      • Web Development >
        • 2014 - Javascript Calendar
        • 2014 - Multi-Room Chat Server
      • Graphics >
        • 2015 - Basic Animation w/ WebGL
        • 2015 - Diamond Square Terrain Generator
        • 2015 - Flight Simulator w/ WebGL
        • 2015 - Multi-Program Texture Mapping WebGL
      • Software >
        • 2015 - Consumer Grade Gaze Pattern Recognition Software
        • 2015 -Test History Jenkins Plugin
      • Other >
        • 2014 - Hashtable for Genomic DNA Sequences
        • 2014 - Closest Pair of Points
    • Virtual Reality, Game Design, & Animation >
      • 2019 - Interactive Music Visualization
      • 2016 - Visualizing Runtime Flowpath in VR
      • 2016 - Fiducial Marker Tracking for Augmented Reality
      • 2015 - Experimenting with PhysX & APEX Destruction
      • 2015 - Rigging Tank Treads using MEL in Maya
      • 2015 - Automated Simulation Teddy Bear Bin
      • 2014 - Networked Multiplayer Game of Set
      • 2014 - Asymmetrical Multiplayer Destruction
      • 2016 - Tracking & Depth Perception
      • 2014 - 8 Week Game Design (Cave Survival)
      • 2015 - Experimenting with Nvidia FLEX
    • Computers >
      • Custom and Watercooled PCs
      • Component Reviews
      • Installation Guides
    • Quantitative Physiology >
      • Computational >
        • 2015 - Modelling Neurons & Action Potentials
        • 2015 - Simulating Neuronal Learning during Brain-Machine Interface
        • 2014 - Imaging: Rabbit Optical Mapping
        • 2014 - Simulating Electrical Stimulation w/ Comsol
        • 2014 - Ion Channels
        • 2013 - Designing Filters to Simulate Olfactory Sensation
        • 2014 - CardioVascular Mechanics
        • 2014 - Renal
        • 2013 - Principal Component Analysis & Singlar Value Decomposition
        • 2013 - 3D Printed Frog Muscle Holder
      • Physical >
        • 2013 - Biomedical Signal Acquisition
        • 2013 - Electrooculogram
        • 2013 - Compound Action Potential in Frog Sciatic Nerve
        • 2013 - Contractile Properties of Frog Skeletal Muscle
        • 2013 - Locust Olfaction
        • 2014 - Voltage Clamp
        • 2013 - Dive Response
        • 2014 - Frog Heart Muscle
        • 2013 - Ultrasound
        • 2014 - Biological Signal Conditioning
        • 2014 - EKG, Vector Cardiograms & Pulse Wave Velocity
    • Electrical Projects >
      • Self Balancing Robot Pendulum
      • Custom Beer Pong Tables
      • 4-axis Robotic Arm
      • Modified Electric MiniBike
      • Secret Knock Detecting Automatic Door Opener
      • Car Audio
      • Tree-House Wiring
      • Laser Harp
    • Auto & Mechanical Projects >
      • Single Turbo Lexus SC300
      • Track Day Mx-5
      • Karting
      • Racing Simulator Rig
      • 50cc Barbie Jeep
    • Random Other Projects >
      • Talk: Embodied Cognition
      • Bathymetry Coffee Table
      • Not your average Tree House
      • Pneumatic Tennis Ball Cannon
  • Experience
    • Resume
    • Work Experience
    • Programming Experience
    • Research Experience
    • Service Work
  • Education
  • Hobbies
    • Motorsports
    • Art
    • Music
    • Gaming
    • Dancing

Track Day Mazda MX-5: the supercharged bathtub
(2012)


Over the years I've built cars for various purposes, and in doing so I've realized a few things...
  1. Building cars for show is not something I'll repeat.
  2. Usable power is more fun than a number on a dyno chart.

For me, the intrigue of driving control and finesse is found in road racing (and perhaps rally).  Lightweight nimble cars on technical circuits provide the most demanding arena for my personal growth as a driver.  Because of this I decided to build a track car.  

I chose the miata for its lightweight chassis and inexpensive aftermarket options.  A decent way into building the car, I realized my size (6' 3") prohibited me from competing in racing organizations such as the SCCA along with a few other sanctioning bodies around the area that used the following rule...
"a drivers helmet must be 2" below a broomstick extending from the windshield to the rollbar/roll cage"
I tried mounting a kirkey racing seat shell directly to the floor pan but I was still too tall.  I guess I wasn't cut out to race a miata in officially sanctioned leagues.  I did however proceed to turn the little bathtub into a phenomenal track day toy.  I may not be allowed to compete in any sanctioned racing, but it rips up a small track better than any other car for the same money.  Besides, I turned to shifter karts for some much more intense racing anyhow. 

Maintenance


Chassis

Hardtop
Rollbar

Suspension


Supercharger


Sensors, Gauges and Engine Management


Cooling

Intercooler and Radiator and custom aluminum cold air box.

Clutch


Custom Dual Throttle Bodies

The intercooler and associated piping would introduce air volume that acts a sort of slack in the throttle response.  To compensate, I fabricated a set of custom bracketry to handle a second throttle body.  By creating a staggered dual throttle body setup with slightly different cams, the throttle response is increased while the wide open flow rate remains the same.

Interior


Dressing the Part

What convertible would be complete without a driving cap and goggles :)
Picture
Proudly powered by Weebly